Humans and Digital Agents – A Mutual Collaboration

Current Systems

• Current systems: Digital system aids human by supplying needed information

Too many constraints

Using Context to Limit the Problem Space

Humans and Digital Agents – A Collaborative Ecology

Aug Cog Vision

- Digital system aids human by supplying context-relevant information
- Human aids digital system by providing contextual information
- Temporal attunement of human-digital systems

Focal and Ambient Information

InfoCockpit displays **content** as **focal** information and **context** as **ambient** information.

The focal/ambient nature of information needs to be preserved and communicated at all levels of technology.

A Collaborative Ecology

Improving Decision Making:

Understanding and Displaying Uncertainty

- Understanding what is known is important positive information
- But just as important is what is *not known*, and the relative certainty of data values
 - Examples of old maps, different sensors
 - "Understand the parameters of the lies that you are being told"
 - Gen. Holcomb
- Decision-making and reasoning literature is relevant here

Non-inertial thinking machine

- Context-sensitive, user-attuned
- Generates and presents alternative realities
 - Gather information
 - Analyze information not currently displayed
 - Generate scenarios
- Presentation of expected utility
 - Significance, consequence and uncertainty symbology
 - Ambient information sonification or visualization of knowledge

Non-inertial thinking machine: Challenges

- Context tracking
- Exploiting agent and related technology
- Estimation and effective display of uncertainty and significance

Non-inertial thinking machine: Approach

- Context tracking
 - Attunement
 - Sensing features of context

Detailed Approach: Contextual Tracking

- Literature Review
 - Sensor/data stream -> Digital information
- Develop Taxonomy of Context
 - Levels of analysis
- Context learning
 - Bayesian, unsupervised, scripted techniques

Non-inertial thinking machine: Approach

- Exploiting agent and related technology
 - What's been done
 - What's useful
 - What's missing

Detailed Approach: Exploiting Agent-like Technologies

- Literature Review
 - Launch-points: Woolridge & Jennings; Nwana & colleagues;
 DAMI.
- Determine current status of relevant technologies (Commander Data)
 - Context-relevant database search
 - Scenario-development/ pruning
 - Decision-aiding/recommendations
- Define desired "Intelligence" of digital partner
 - Generate alternative configurations not under consideration
 - Expand possibilities
 - Highlight knowledge gaps

Non-inertial thinking machine: Approach

- Estimation and effective display of uncertainty and significance
 - Identify uncertainty criticality
 - Modeling uncertainty
 - Effective display and interaction design
 - Guide human reasoning

Detailed Approach: Uncertainty and Significance

- Review state of the art
 - Decision support
- Identify error tendencies, decision bottlenecks and command priorities
- Develop and evaluate visualization & other support technologies
 - Incorporate attentional models
 - Expand perceptual capabilities (windows of temporal/spatial integration)

Non-inertial thinking machine: Deliverables

- Near-term (2-3 years)
 - Technology survey and assessment
 - Part-task design, experiments and simulations
 - Feasibility demonstrations
 - Testbed and supporting tools

Non-inertial thinking machine: Deliverables

- Mid-term (5 years)
 - Demonstration project(s)
 - Field testing
 - Integrated CAE demonstration

Non-inertial thinking machine: Deliverables

- Far-term (10 years)
 - Mission technology development
 - Large-scale validation
 - Technology transfer

Lingering Problems

- Emotion and decision-making
- Fatigue and stress
- Computer object recognition and "self-organizing semantic networks"
- Positive and negative information
- Intuition